¹³C Nuclear Magnetic Resonance Study of the Cation formed from cis-Bicyclo[3,1,0]hexan-3-ol

By PAUL A. BUTTRICK, COLLETTE M. Y. HOLDEN, and DAVID WHITTAKER* (The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 3BX)

Summary In solution in SbF5-HSO3F-SO2 at -57°, cisbicyclo[3,1,0]hexan-3-ol yields a bishomocyclopropyl cation of moderate thermal stability.

WE have recently¹ shown that in solution in SbF₅-HSO₃F-SO₂ at -50° , 4β -H-thujan- 3α -ol (I) forms the cation (III) which slowly rearranges to (IV). Formation of (III) via (II) is probable, though we did not detect (II) directly. This result is in contrast to the observation² that the unsubstituted alcohol, cis-bicyclo[3,1,0]hexan-3-ol (V), yields only (VIII) in SbF₅-HSO₃F-SO₂CIF at -60°, suggesting that both the ions (VI) and (VII) are unstable under the conditions employed.

TABLE

¹⁸C Chemical shifts (δ values downfield from Me₄Si)

Substrat	e		C-1	C-2	C-3	C-4	C-5	C-6
Bicyclo[3,]	l,0]he	xan-						
3-one	•••		12.4	40.9	217.0	40.9	12.4	13.6
(V)			16.4	$34 \cdot 4$	79·4	34.4	16.4	10.1
trans-Bicy	clo[3,	1,0] -						
hexan-3-ol		· -	16.4	22.0	81·1	22.0	16.4	10.1
(VII)	••	••	262.0	28·3ª	47·0ª	148.1	223.5	50.8

^a These assignments may be interchanged.

Formation of the ion (VI) by treatment of the chloride of (V) with SbF_5-SO_2CIF at -120° has been claimed,³ this ion rearranging at -40° to an unidentified ion. We now report observation of (VII), an ion of moderate thermal

- ¹ C. M. Holden and D. Whittaker, J.C.S. Chem. Comm., 1974, 353.
 ² G. A. Olah, G. Liang, and Y. K. Mo, J. Amer. Chem. Soc., 1972, 94, 3544.
 ³ S. Masamune, M. Sakai, A. V. Kemp-Jones, and T. Nakashima, Canad. J. Chem., 1974, 52, 855.
- ⁴ P. K. Freeman, M. F. Grostic, and F. A. Raymond, J. Org. Chem., 1965, 30, 771.

stability, thus removing the apparent anomaly of different reactions of two essentially similar substrates.

Treatment of the alcohol (V) with SbF₅-HSO₃F-SO₂ at -72° yielded the ion (VII) whose ¹³C n.m.r. spectrum is reported in the Table. This ion was stable for several hours at -57° . Repetition of the experiment with HSO₈F -SO₂ yielded the same ion, (VII), which, after removal of the SO₂, was stable for 15 min at room temperature, but decomposed to an unidentifiable mixture when kept at room temperature for 18 h. The ion (VII) is clearly of comparable stability to the substituted version, (III).

Our data are consistent with the results obtained by Freeman and his co-workers⁴ on the acid-catalysed addition of methanol to bicyclo[3,1,0]hex-2-ene, and suggest that the reaction sequence which we proposed for the substituted system¹ is equally applicable to the unsubstituted system.

(Received, 2nd April 1975; Com. 367.)